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' I. THECRY OF TIE LLCirPTARX i MOCSSSES IV 

THE SPLXTTOi'-HOTTS 

/*.. irTTDDUCTIOF 

The use of the infrared spectrophone for the determination of the 

lifetime of   vibrationally excited molecules was first described by 

Slobodskaya (1)« This instrument consists essentially of a cell con- 

taining an infrared absorbing gasj the cell is illuminated intermit- 

tently x&th radiation corresponding to an absorption band of the gas 

and the periodic variations in pressure due to alternate heating and 

cooling are detected with a sensitive microphone. Changes in phase 

shift of this signal, relative to the phase of the radiation, are re- 

lated to the mean vibrational lifetimu of the excited molecules. The 

experiments of Slobodskaya were performed with various mixtures of CO2 

and air, and results were reported for both infrared fundamentals 

(fcfc = 667 cm" and u^ - 2350 cm'1) a8 weii as a combination band. 

An analysis of this experiment was described by Stepanov and 

Oirin (2), who considered a two state model of the vibrational levels 

and assumed square wave excitation. 

A detailed analysis of the inelastic collision process in which 

vibrational energy is converted into translational energy has been given 

by Schwartz, Slawsky, and Herzfeld (3)* whose results indicate that the 

probability of this sort of process is a very sensitive function of both 

the energy of tlte vibrational quantum and of the reduced mass of the col- 

lision. At room temperature and atmospheric pressure, the relaxation 

time for this process may vary  from the order of the 10"^ sec. for vib- 

rational modes of relatively low frequency, to as high as 1 sec. for 
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the higher frequency modes.   Relaxation times as large as the latter 

figure have not been observed for several reasons:    in sound dispersion 

studies, for example, the equilibrium heat capacity due to such modes 

is too small to detect. 

It is the purpose of the remainder of this paper to carry out an an- 

alysis of the rates of the elementary processes occurring in the spectro- 

phone with emphasis upon the fact that the large range of the parameters, 

especially their sensitivity to the vibrational frequency, leads to com- 

plications in the interpretation of the observed phase shifts. 

B.    RATE OP OCNVLRLIOT OF RADIAJTT TO TRAKIATICF ENERGY 

It has been shovn by Schwartz, Slawsky, and Herzfeld (3) that the 

net rate of conversion translational into vibrational energy is 

dflv _ lfe (T).S "t (1) 

where % is a characteristic time constant measuring the life-expectancy 

of the excited vibrational state before its termination by an inelastic 
v 

collision. E^ is the actual vibrational energy and E (T) is the vib- 

rational energy which would be in equilibrium with the translational 

i 
energy at translational temperature, T« 

The net rate of absorption of photons must now be considered. For 

this purpose, the Einstein coefficients are required, namely K..^~m-\t 

B__w„ T and B      , which are respectively the coefficients of v-vv-J.,    v*-V+ 1, 

- 

spontaneous emission, induced emission, and induced absorption. Only 

the fundamental transitions involving unit change in the vibrational 

quantum number, v, are considered. These quantities are given by the 

following expressions, 

3C3 
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B— %z^)y*r 3<2b! 

"Wwl = TEy!^ (^)=P(-1) (2c) 

in the case of the harmonic oscillator* The dipole derivative with 

respect to the normal coordinate, Q, is evaluated at equilibrium and 

it is assumed that only linear terms in (^appear in the expansion of U» 

Now if the number of molecules per unit volume in the vibrational state 

v is indicated by n^. and if p is the density of radiation of appropri- 

ate frequency, the net rate of increr.se of vibrationjtl energy, per unit 

volume, at the expense of radiation is 

or 
n~  / r 

dEvs h-y   > ; _ ; A    _ + B     ^ + By>s 

v = o 
ar*        -*-• L '^v>.v-i     v-s-v-i^/    *>•••• iyj  "v 

= hV(-Cvl"kvnv+ ^p2 »,vJ 

(3) 

~". In (3)» n is the total number of molecules per unit volume. 

In the spectrophone experiments to be considered, the radiation 

density, C   , is modulated with angular frequency, u), so that 

Although in some cases the wove form may be more nearly sax are than 

sinusoidal, the detecting device is usually charply tuned to the fund- 

amental modulation frequency, so that we shall be primarily concerned 
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with the second term in (U),  and will only use the first two terns in 

the following development. 

By combining the expressions for interconversion of translations! 

and vibrational energy and for interconversion of vibrational and radiant 

energy, using the modulation frequency, 6J , one finds 

\ *jg.  =   -(<j(+A)Ev r i LV(T) r a, +a,^r,Wt «) 

where aQ = nhV ( ~!   1   ti P,,) (5a) 

j 

8^= rihVpf, (5b) 

If one now considers the gross heat balance in the spectrophone 

cell, and allows for heat loss only by conduction, the heat flow 

equation becomes 

*V»T -eytt    f  ifEv-Mlq ,0 (6) 

in which K/ is the thermal conductivity, a. the heat capacity (for unit 

•% volume), and the last term represents the rate of production of sens- 

ible heat by conversion of vibrational into translation energy. The 
• 

simultaneous solution of (5) and (6) is considerably simplified in 

case h. V » x/. T , since Ev (T) reduces to the zero point energy, 

nhV/2, ice., a constant independent of temperature, and hence of the 

time. Subject to such an assumption, the steady-state solution of (5) 

is given by: 

j * 

I 
I 
i. 

Ev = bQ + bx sin(nt +f ) (?) 
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with       bQ = gh V L, jf. ^ £2 ') + {'',: °* 3 '.?o) 
CK "C i • I 

bi =nh it £-L£J  (?b> 

-t-- f-^j) (TO 
Before proceeding to a discussion of the heat flow equation, we must 

consider the case in which E    (T) cannot be put equal to nhj//2.    Since 

the actual variations of T are small, 

\ <T) = <y AT + Ev (T0) 

where cv» is the vibrational heat capacity per unit volume and at constant 

volume, and T = T   + AT.    Equations ($)  and (6)  are replaced by 

dEv a -(01+4*) E
v + V AT + SJ. (TO) + aQ + ax sinOJt      (51) 

K/ V2 (AT)  - °v<!£r+ Ev - cv'AT - Ev (To) = 0 (6t) 

A formal solution of (5«) is obtained by putting 

Ev = b0» + bi sin(wt + $) + c^'f ATdt 

with       b0« = Ey(To) + nh V( \7   t £ ?. £,) 

a ?; + I 

C.     SOLUTION OF THE HEAT FLOU ELATION 

First consider the case in which Z^ (T) is a constant, namely nhV/2. 

The heat conduction equation (6) then becomes 



X, V T- cv^J  + bo + bx sin (6jt +ai) = 0 ;G) 

with the aid of (?)«   Again, we are interested in the steady-state, per- 

iodic solution of (8)»   Although various boundary values may be assumed, 

we shall consider only the simple one-diraensional problem, T = Tx,t) 

with T(o,t) s T ($,t) = 0,   H representing the length of the cell.   The 

assumption of a solution of the form 

T(x,t) = f(x)+ g(x) sin(^t^) +• h(x) C0*f Vdt+i) '9) 

together with the above boundary conditions leads to rather clumsy ex- 

pressions for g and h involving linear combinations of the functions 

sinh x sin x, sinh x cos x, and cosh x sin x, where 

-\ 2= 2K^ (10) 

The average values of g(x) and h(x) over the length of the cell, 

simplify somewhat to yield the following expressions: 

if 

1 

? 
-b-,      .      sinh V cos X + cosh  -U- sin-r  - SIIM +   coshl-sin/cos K-,(11) 

*i 
>, 

%t°v (7) 

slnh2i + sin2 £ J 
X A 

sinh*-cosh~- - sinh£_.cos£+ coshsi sinj_- sin/..coeI_ - 
XX X       % AX A      X   -Q' 

(12) "" 
sinh2_?  + sin2 * 

X X 

If the condition X»/\obtains, the expressions for g and h simplify to 
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whence H follows that the time dependent part of T, averaged over the 

cell length, Is 

r =   bl T\ sin (6?t +/) + U-. -1) cos ("* +^ > (13> 

which may finally be written in the form 

f = b1     (1 - 2A+ 2>?) l/2sin (u)% +6 + d*) (Hi) 
        7   r r   r 
0>Xcv 

<^ = tan-1 (1 -i) (15) 
A. 

It is apparent that vjhen if>> A * </' will be very close to -V/2t  and 

although A may vary slightly if the pressure or composition of the gas 

in the spectrophone cell is altered, <^« will remain almost constant. 

Turning to the case in which Ey(T) is not constant, we shall neglect 

the dependence of phase shift upon heat conduction, which is simply 

equivalent to letting &  ->» 0 in (8)• In such a case, the functions 

g and h assume the values: 

2 2 
8 = » X Ybl  (16) 

WWW——M—<—WW >  • i i mi  ••.. — ••• (17) 

in which = c*/c , i»e», the ratio of the vibrations! heat capacity to 
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the translational heat capacity. Here the phase shift turns out to be 

M"=tan-l(   2zJ±Z tXl r l    COTT j 

1 

and 

Continuing the assumption that U) is high enough so that heat 

conduction does not play an important role, we now combine the results 

of (7)» (7b), (7c), (16), and (17) to obtain an expression which gives 

the temperature amplitude and tha overall phase shift: 

m which   A     _ (Olnt^tito -% -y 
*•'• ~ CJ r^^V)V^)0 Vr)V^^0] 

Here the integrated absorbtion coefficient, A*, at the gas density 

employed, has been introduced; see Thorndike, Wells, and Wilson (5)• 

IT is the intensity of the modulated radiation. 

Some simplification of (20) is greatly desirable in order to relate 

the observed phase shift to %,    Other factors being equal, a small 

value of OL % in comparison with unity leads to a large amplitude and 

to the following simplification of (20). If &%<< \ and if <t?£*< Y , 

( 20) becomes approximately 

6 ~ tan" — -X. K-%to?: 

since tC%  is then necessarily small compared with unity. This situa- 

tion is realized experimentally for lower frequency molecular modes, 

s*y below 1000 cm"1, where % is less than 10"** sec- Y &   0*1* with 

approplate choice of CO  . 
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For the higher frequency molecular modes, say above 2000 cm" , fj 

may become quite large, perhaps 10-2 seconds or greater. Using Eggers 

and Crawford's (h)  value of ^H for the stretching mode of C09, Ctf % 

would be 1*2.7 with X,~ 10~2 sec. Thus, for high frequency molecular 

modes of high intensity, we may perhaps need to consider the case in 

which 0^'£.»l >  which simplifies (h to 

0*tan-1 1     jT -60?; 

provided CJ^.« f  ,  This latter situation is relatively unfavorable, 

however, for the following reasons:  ((,) when £ is large, a very small 

(-0 must be employed to justify the simplification of tan" just employed; 

(cj.) this leads to relatively large conduction heat loss, In any case, 

it appears that Slobodskaya's (1) identification of the observed time 

lag with % is not justified for the 2350 cm  band of C0? when a modu- 

lation frequency of 10  = I57& sec."1 was employed. 

D.  CONCLUSION 

It has been shown that the phasa shift of the temperature variations 

in the spectrophone cell, averaged over the length of the cell, depends 

in a complex manner upon the following variables: 

Ot = probability of spontaneous emission 

'Y  s ratio of vibrational to translational heat capacity 

CO - modulation frequency 

*£ s mean lifetime for inelastic collisions. 

Although «X snd Y are known with good accuracy for the modes of vibration 

to be studied experimentally, it appears necessary to work under condi- 

tions such that the observed phase shift is simply related to %\ 
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this situation is attained experimentally most easily for low frequency 

molecular modes, e0ga, less than 1000 cm"*
1, or for higher frequencies 

in the case of collisions viith very light molecules such as Hp or He. 

It is further necessary that <J2<T<Y. Since T is 0.133 when the mole- 

cular frequency is 1000 cm"1, and£may be of the order 10"^, (jj should 

be less than 10 , 

When Q| £ is much less than unity, and* in addition, of <£. < y 

tae amplitude of the temperature variations reduces to 

/KI'        rev 
and when oCt'< \   , but    U)'CV, % > > y' 

AT, --   AIL I 
'••'V Cv 

It is thus apparent that optimum response is obtain when^CLs of 

the order of *f '*, a condition which is somewhat in conflict with 

the optimum situation for a simple relation between <r. and % •    If Y 

vanishes, the response improves as/0 decreases, but this conclusion, 

of course, neglects the effect of heat conduction, which demands that 

iij »   SJ0- 
fzcv 

for good response. 
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